Sending Value-Added into Tailspin: A Simulation Study of Measurement Error and Nonrandom Sorting

Cassandra Guarino
Eun Hye Ham
Mark Reckase
Brian Stacy
Jeffrey Wooldridge

Oct 11, 2013

Acknowledgment: This work was supported in part by a Pre-Doctoral Training Grant from the Institute for Education Sciences, U.S. Department of Education (Award #R305B090011) to Michigan State University and an IES Statistical Research and Methodology Grant (Award #R305100028). The opinions expressed are those of the authors and do not represent views of the IES or the U.S. Department of Education.
Introduction

- Accurate teacher value-added measures in high demand
- Bias caused by measurement error increasingly a concern
- Some districts and states moving toward estimators that try to correct for measurement error

Research Questions:

1. How does measurement error affect teacher evaluation measures?
2. Which teachers most affected by bias?
3. Do measurement error corrections reduce bias in VAMs?

Findings:

- Measurement error can generate noticeable bias, particularly for teachers with students in tails
- Measurement error correction techniques work well when assignment based on true scores
- Work less well when assignment based on observed scores
- Test score ceilings and floors are a less important issue
Background on Measurement Error in Test Scores

- **Measurement Error**
 - State achievement tests composed of finite number of test items (40-50 questions)
 - With small number of test items, have imperfect measures of student ability
 - There are other sources of measurement error as well
- This measurement error can cause bias in value-added estimates
Data Generating Process

\[A_{i3}^* = \lambda A_{i2}^* + \beta_{i3} + c_i + u_{i3} \]

- DGP based on true scores
- \(A_{ig}^* \) - true achievement level of student i in grade g
- \(\beta_{ig} \) - teacher effect
- \(c_i \) - student learning heterogeneity
- \(u_{ig} \) - idiosyncratic error term independent across students and time
Model and Empirical Approach

Value-Added Model and Estimators
Considering Model:

\[A_{ig} = \lambda A_{ig-1} + T_{ig} \beta + c_i + u_{ig} + v_{ig} - \lambda v_{ig-1} \]

Examine Performance of:

- DOLS: OLS estimation
- EIVReg: Errors in Variables Regression - uses average measurement error variance
- Colorado Growth Model
Simulation Design

Simulation Parameters
- Grade 3 plus a base year
- 320 Students
- 16 teachers
- 1 School
- Class size fixed at 20
- 100 Simulation Reps

Test Score Generation
- Test scores generated based on 3 parameter Logistic IRT model
- Item parameters come from large, diverse southern state’s test
- Estimate A_{ig} by MLE
Box and Whisker Plots:
- Middle of Box - Median from 100 reps
- Lower Part of Box - 25th Percentile
- Top of Box - 75th Percentile

For additional simplicity, we assume every teacher has identical effect of 0
- Classes sorted by prior year true achievement level or test score
- Teacher on left side of graph receive class with lowest prior score
Measurement Error Corrections

- Measurement error corrections can give bias free estimates if some assumptions are met
 - Use information on measurement error variances to adjust estimates for bias
 - Requires that measurement error uncorrelated with true scores and other covariates
 - Not true when assignment based on observed scores or with test ceilings and floors
 - Plausible cause of violation is if principals assign observed scores
 - Then non-random assignment of classrooms to teachers creates correlation between teacher assignment and measurement error
EIVReg Estimator

Assignment using True Scores

Assignment based on IRT Scores
Colorado Growth Model

- With measurement error, Colorado growth model approach may be problematic
 - Difficult to make measurement error adjustments in quantile regression
 - Heteroskedastic measurement error in dependent variable can cause bias in quantile regression
COLORADO IRT scores, grade 3, 4 Cohort, RG-RA
Conclusions

- Under some conditions of non-random assignment and measurement error, VAMs can mischaracterize teachers.
- Estimators that correct for measurement error don’t work when assignment based on observed score.
- Colorado Growth Model looks surprisingly good, but we need to study more.
- Test score floors and ceilings can add even more potential for bias, although in simulations did not see big differences.
Assignment and Grouping Based on Observed Scores

- Principals could group students on observed scores
- Then non-random assignment of classrooms to teachers creates correlation between teacher assignment and measurement error
- Can create bias even for EIVReg and other measurement error corrected estimators
- No longer theoretically clear whether bias greater or less than VAMs that ignore measurement error