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Growing Policy Concern About How to Distribute
Effective Teachers Across Schools and Students

¥ Policy efforts to improve achievement of disadvantaged students
Increasingly focus on redistributing effective teachers (e.g., Race to
the Top)

¥ NCLB requires states to improve the equitable distribution of
effective teachers based on licensure and subject-matter
preparation

¥ However, observable teacher characteristics are only weakly related
to teacherOs effects on student achievement

¥ As aresult of this and increasing data availability, current policy
Increasingly focuses on the distribution of teachersO effectiveness as
measured by their Ovalue-addedO
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Examining the Distribution of Effective Teachers is
Challenging

¥ Statistical models to isolate teacherOs impact, or value-added (VA)
are imperfect measures of OtrueO teacher effectiveness

¥ Estimates of the amount of student/teacher sorting depend on:

¥ Modeling choices and assumptions about teacher assignment,
peer effects and variation in classroom composition

¥ Itis therefore unclear under which circumstances and modeling
decisions can value added estimates capture the distribution of
effective teaching without bias
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Empirical Estimates From a Large Urban District Are
Sensitive to Modeling Approach
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This Paper

¥ Uses Monte-Carlo simulation methods to understand how:

Modeling choices (AR, RE, FE; Levels or Gains),

Assumptions about variability in classroom composition (Extreme
variability, Limited variability),

Assumptions about teacher assignment (Random, Systematic),
Assumptions about peer effects,

Assumptions about test-score decay,

Introduction and exclusion of classroom composition controls
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¥ Affect estimates of a distribution parameter that measures the
correlation, at the teacher level, between effective teaching (teacher
value-added effects) and average student characteristics
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Simulation Set-up:

¥ Simulation model:
T, =l +/0BD +" T, #, &,
7y = 0BDyp + &

where OBD= Observed background disadvantage

¥ Parameter of interest:

"o COV(./J- ,OBD; )
# S

OBD;
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Data-Generating Process

¥ 120 teachers, with effectiveness distribution !'; ~N(0, 0.2).assigned to
classrooms with a minimum of 10 students:

= Random Assignment (p!" )
=| Noisy sorting on the proportion of OBD students in the
classroom (p#3$"%&)

¥ A single cohort of 2,400 students with test score data for 4 years:

¥ T,~N(0,1) remaining periods according to simulation eq. but
normalized _ AppIOX
¥ 50% OBD=1, 50% OBD=0. OBD; |, (0.5,0.3)
¥ 1,=0 (i.e. no unobserved student heterogeneity).
%

¥ 100 simulations
!
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Data-Generating Process
¥ We also assume two scenarios for student and teachers mobility:

=] Extreme Variability in Classroom Composition  -We ignore the
school dimension and students and teachers are re-assigned into
new classrooms each year

=l Limited Variability in Classroom Composition - We consider 20
schools (6 teachers per school). Teachers and students are
assigned into schools the first year and not allowed to leave.
Students are re-assigned to classrooms each year within schools

¥ Remaining parameter assumptions:
¥ "=-0.08; #=-0.3;
¥ $=0.8,0.4,0.2 T,=U,+!/0OBD, +" T, # OBD; $ ; %ﬁ
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Results- RA (#" ). Controlling for Class Composition

Levels

Gains

EB
Aggregated Random Fixed  Fixed Aggregated Random Fixed EB Fixed
Residuals  Effects  Effects Effects Residuals  Effects Effects  Effects
Panel A. Decay=0.8

Extreme Rank
Variability Correlation
n (COfr(¢j><|75j)) 0.925 0.926 0.926 0.926 0911 0911 0911 0911
Classroom  Distribution
Composition Correlation
(1 School) (p) 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Limited Rank
Variability Correlation
n (COW(¢,-,¢Iﬁj)) 0.916 0906 0.882 0.880 0.862 0.860 0.852 0.848
Classroom  Distribution
Composition Correlation
(20 Schools) (p) -0.020 -0.144 -0.237 -0.230 -0.006 -0.036 -0.072 -0.070
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Results- RA (#" ). Controlling for Class Composition

Levels

Gains

EB
Aggregated Random Fixed  Fixed Aggregated Random Fixed EB Fixed
Residuals  Effects  Effects Effects Residuals  Effects Effects  Effects
Panel A. Decay=0.8
Extreme Rank
Variability Correlation
in (COW(-’,-J! D) 0.925 0.926 0.926 0.926 0911 0911 0911 0911
Classroom  Distribution
Composition Correlation
(1 School) () 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Limited Rank
Variability Correlation
n (COW(-’,-J! ) 0.916 0906 0.882 0.880 0.862 0.860 0.852 0.848
Classroom  Distribution
Composition Correlation
(20 Schools) () -0.020 -0.144 -0.237 -0.230 -0.006 -0.036 -0.072 -0.070
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Results- RA (#" ). Controlling for Class Composition

I 1 I I 1 1 o I I I
Levels Gains
EB
Aggregated Random Fixed Fixed Aggregated Random Fixed EB Fixed
Residuals Effects Effects Effects Residuals Effects Effects Effects

Panel A. Decay=0.8

Extreme  Rank
Variability ~ Correlation
in (Corr(g,8))  0.925 0.926 0.926 0.926 0.911 0911 0.911 0.911

Classroqr_n Distribution
Composition Correlation
(1 School)  (p) 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Limited Rank

Variability ~ Correlation
in (Corr(g,.8,))
Classroom  Distribution

Composition Correlation
(20 Schools) (p)
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Estimated , Using Fixed Effects in Levels
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Results- Sorting  (#$ (%). Controlling for Class
Composition

Levels Gains
EB EB
! Aggregated Random Fixed  Fixed Aggregated Random Fixed  Fixed
| Residuals  Effects Effects Effects Residuals  Effects Effects Effects

! Panel A. Decay=0.8
Extreme Rank '
Variability Correlan'on
n (Corr(/;/})) 0.915 0.925 0.926 0.925 0.898 0.908 0.909 0.909

Classroom  Distribution
Composition Correlation

(I School) () -0.261  -0.357 -0.366 -0.364 -0.255 -0.345 -0.359 -0.356

Limited

e Rank
i\l’la“abﬂ“y Correlation 0.912 0912 0.910 0.794 0.819 0.842 0.838

Classroom Distribution
Composition Correlation

(20 Schools) (") -0.321 -0.506 -0.496 -0.030 -0.105 -0.210 -0.20%
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Results- RA (#' ). NOT Controlling for Class Composition

Levels Gains
EB
Aggregated Random Fixed Fixed Aggregated Random Fixed EB Fixed
Residuals Effects Effects Effects Residuals Effects Effects Effects

Panel A. Decay=0.8

Rank
Extreme  Correlation
\é?;'sastr’ggﬁn (Corr(/, /' ))) I"HPP  1"HPPY I"H#EE0 1"#PPO "#1&% "#l&% "#1&Y 1"#I& Y%
Composition Distribut_ion
(1 School) Correlation
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Limited  Correlation
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Composton DSt
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Results- Sorting (4% (%). NOT Controlling for Class
Composition

Levels Gains
EB EB
Aggregated Random Fixed Fixed Aggregated Random Fixed Fixed
Residuals Effects Effects Effects Residuals Effects Effects Effects

Panel A. Decay=0.8

Extreme Rank
Variability ~ Correlation
in (Corr(/;/)) I"#$%  1"#I%E "#$% 1"#$Y% g & VRS IR E TR

Classroo_r_n Distribution
Composition Correlation

(1 SChOOI) (") l!ll(%)é l!ll(%*é l!ll(%# I!II(%_'_é l!ll ’%é l!ll((y(ﬁ l!ll(%_é l!ll(’# p
Limited Rank

Variability ~ Correlation —

in (Corr(/;/' ) "HBE -+ &) 1"H-%E 1H-, 6 "%y & 1" & 1" 0 1™

ClaserO_r_n Distribution
Composition Correlation
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Conclusions %

¥ Estimated distribution of teacher VA by student characteristics depends
on modeling method and specification

¥ Models that do well recovering the size of teacher contributions are not
necessarily those that do a good job on estimating the degree of sorting

¥ Models in levels that employ teacher fixed effects produce less-biased
estimates when there is nonrandom student sorting

¥ In the absence of student sorting, aggregated residuals methods or
models in gains perform better

¥ May be preferable to exclude classroom characteristics in aggregated
residuals or teacher random effects models, especially if demographic
sorting is likely
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Conclusions %
¥ Things to keep in mind:
¥ Degree of variability in classroom composition

¥ Analysis of variance between and within
¥ Teacher and student mobility

¥ Degree of sorting to be estimated
¥ Study teacher and student assignment mechanisms in the

specific district
¥ Study how different results are when using different methods
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