Do Rothstein’s “Future Teacher Effects” Imply Value-Added Models (VAMS) Are Biased or Miss-Specified?

October 10 2013

Presentation at Michigan State University, Institute for Education Sciences Conference
By Duncan Chaplin
Co-Author and Paper

Dan Goldhaber, Center for Education Data and Research, University of Washington

Presented at APPAM, NBER, BLS, and Urban Institute
Main Contributions

- Clarifying Rothstein Falsification Test based on Future Teacher effects
- Simulate Magnitude of Future Teacher Effects in Value Added Models
- Test to see Whether Future Teacher effects suggest Bias or Miss-specification
Introduction

- Rothstein’s Falsification Test for VAMs
 - “Future teacher effects” on students’ past achievement in real data are large and jointly significant (QJE 2010)
 - This appears to suggest a need to adjust more for dynamic ability tracking

- We find large and jointly significant future teacher effects with VAMS that are correctly specified and have no bias
Growing interest in using student growth as a component of teacher evaluations
 – Race to the Top, DCPS, Chicago Teachers, etc.

Falsification test used to call VAMs into question
 – Rothstein and Darling-Hammond (2012) say that future teacher effects show that, “… VAMs wrongly attribute to teachers other influences on student performance that are present when the teachers have no contact with the students …”

Falsification test now commonly used by researchers
 – Harris and Sass (2010) – Districts for Research
 – Koedel and Betts (2009) – Revised VAM
 – Briggs and Domingue (2011) – Los Angeles VAM
Rothstein Points Made to Congress

- “Logically, 5th grade teachers can’t influence 3rd grade test scores.

- So a VA model that identifies teachers’ true effects should show zero effects of 5th grade teachers on 3rd grade test scores.

- But all extant VA models show large effects!

- VA rewards or penalizes teachers for the kids they teach, not just for how well they do it.

- Not fair to ELL teachers / special needs teachers / other specialists.”
 - Rothstein in Congressional Testimony September 2011,
 - Made similar points in February 2012 paper in Phi Delta Kappan
Rothstein Test: Bias and Miss-Specification

- **Does the test show that VAMs are biased?**
 - No
 - He notes, negatively correlated errors are needed for bias
 - We find that the falsification test rejects without negatively correlated errors

- **Does the test show VAMs are Miss-Specified?**
 - No
 - He claims test shows that students are not randomly assigned conditional on the covariates used in the VAM
 - We find that the test rejects when we randomly assign students conditional on covariates in VAM
Start with Two-Teacher Example

- \(A_5 = \lambda_v A_4 + \beta_1 \tau_{15} + e_5 \)
- \(A_5 \) = Achievement in grade 5
- \(\tau_{15} \) = Has teacher 1 (teacher 0 omitted)
- \(\beta_1 \) = Effect of teacher 1 vs. teacher 0
- \(e_5 \) = Other factors
- \(\lambda_v \) = Previous learning effect
- Tracking based on prior achievement
VAM vs Falsification Test

VAM Equation: \[A_5 = \lambda_v A_4 + \beta_1 \tau_{15} + e_5 \]

(FQ1)

Falsification Test: \[A_3 = \lambda_f A_4 + R1 \tau_{15} + w_3 \]

(FQ2)

- RHS Same (g4 achievement and g5 teacher)
- Outcomes differ (G3 achievement vs G5)
- R1 is “future” teacher effect from Rothstein Test
- R1=0, but \(R1 \hat{=} \neq 0 \) if \(\text{cov}(\tau_{15}, w_3 \mid A_4) \neq 0 \)
- \(R1 \hat{=} \neq 0 \) appears to “falsify” VAM, but it may not

Test is linear, but tracking is inherently non-linear
Non-Linearities and Rothstein Test

- $R1\text{hat} = \text{Estimated future teacher effect}$
- $E(R1\text{hat}) = \frac{\text{cov}(\tau_{1r5}, A_{r3})}{\text{var}(\tau_{1r5})}$
- where τ_{1r5} and A_{r3} are residuals equal to the actual minus predicted values given A_4
- Correlated residuals imply $R1\text{hat}$ non-zero
Graphing Residuals

- $E(R_{1\text{hat}}) = \text{cov}(\tau_1^{r_5}, A^{r_3})/\text{var}(\tau_1^{r_5})$

- Grade 5 Teacher: $\tau_1^{r_5} = \tau_1 - \gamma_1 A_4$

- Grade 3 Achievement: $A^{r_3} = A_3 - \gamma A^* A_4$

- High track students (with higher scores in grade 4) get the better teacher (with $\tau_1 = 1$)
$$A_4$$

Grade 5 Teacher Residuals

+/- differences due to Linear Predicted Probability minus Non-Linear Actual Probability given $$A_4$$

Group IV

Group III

Group II

Group I

Low-Track Students

High-Track Students
Grade 3 Achievement Residuals

Low-Track Students High-Track Students
Grade 3 Achievement Residuals (Continued)

+/− differences due to Linear Prediction minus Non-Linear Actual Grade 3 Achievement given A_4

Group IV

Group II

Group III

Group I

Low-Track Students High-Track Students
Residuals: G3 Achievement and G5 Teacher

Group I
Low-Track Students

Group 2

Group 3

Group 4

τ_{15}

A_3

A_4
Does these Non-Linearities Matter?
Simulation Parameters

- Parameters similar to Rothstein’s

- Large Ns
 - 600 teacher effects
 - 200 schools,
 - 3 teachers per school (4th omitted),
 - 20 students per teacher
 - 16,000 students

- Other Parameters Standard
 - Errors jointly normal, Std Dev = 0.4
 - Teacher effects Std Dev = 0.10
 - λ between 0.91 and 0.95 to keep Std Dev Achievement close to 1 across years
Estimation Methods for Miss-Specification

- Conduct Rothstein falsification test with
 - random assignment,
 - miss-specified model, and
 - correctly specified model

- Calculate the std dev of the future teacher effect estimates
- Calculate the std dev of the current teacher effect estimates
- Errors are uncorrelated, estimates are unbiased
<table>
<thead>
<tr>
<th>Topic</th>
<th>Subtopic</th>
<th>Random Assignment</th>
<th>Miss-Specified VAM</th>
<th>Correctly Specified VAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 5 Teachers Tracked on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Error</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grade 3 Scores</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Grade 4 Scores</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Correlated Errors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future Teacher Effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Std Dev Future Teacher Effect Estimates</td>
<td>0.132</td>
<td>0.331</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td>Std Dev Current Teacher Effect Estimates</td>
<td>0.139</td>
<td>0.132</td>
<td>0.137</td>
<td></td>
</tr>
</tbody>
</table>
Estimation Methods for Bias

- Test for bias by comparing true teacher effects to estimated teacher effects
- Calculate Correlation of True Teacher Effects and Estimated Teacher Effects, adjusted for estimation error
- Run with and without correlated errors
Simulation Results re: Bias

<table>
<thead>
<tr>
<th>Topic</th>
<th>Sub topic</th>
<th>Random Assignment</th>
<th>Miss-Specified VAM</th>
<th>Correctly Specified VAM</th>
<th>Errors Not Correlated</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5 Students Tracked on:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3 scores</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 4 scores</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Omitted variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlated Errors</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th></th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Teacher Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Correlation with truth</td>
<td>0.97</td>
<td>0.77</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Note: Correlations with truth adjusted for estimation error.
Robustness Checks

- With and without measurement error in test scores
- With previous grade teachers added to falsification test (a version Rothstein estimated)
- Switched lagged and double-lagged achievement
- With non-linear lagged achievement polynomials in the falsification test regression
- Same results
 - Rothstein test continues to reject even when VAM is correctly specified (i.e. students are randomly assigned conditional on lagged achievement) and when there is no bias.
Conclusions

- Rothstein has influenced both policy makers and researchers
 - Appears to suggest VAM misspecification

- We find Rothstein Future Teacher test rejects
 - Without bias
 - Without misspecification

- Future Teacher test may not provide useful guidance on using VAMs for either policy or research purposes

- Other evidence suggests small bias
 - Our theoretical results regarding negatively correlated errors
 - Kane and Staiger (2008), Rothstein (2010), and Chetty et al (2012)
For More Information

- Duncan Chaplin
 - DChaplin@mathematica-mpr.com

- Dan Goldhaber
 - DGoldhab@u.washington.edu

- Our paper is available at
 - www.mathematica-MPR.com
 - www.cedr.us and
 - www.caldercenter.org